Application de la dérivée

Position relative de deux courbes

Exercice 1

Soient f et g deux fonctions définies sur $\mathbb R$ dont les courbes $\mathscr C_f$ et $\mathscr C_g$ sont représentées ci-contre dans un repère du plan.

- 1. Étudier la position relative des courbes \mathscr{C}_f et \mathscr{C}_g
- 2. En déduire les solutions des équations et inéquations suivantes

a.
$$f(x) = g(x)$$

b.
$$f(x) > g(x)$$

c.
$$f(x) < g(x)$$

Exercice 2

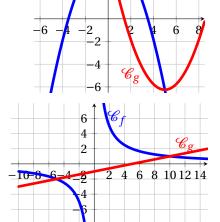
Soient f et g deux fonctions définies sur $\mathbb R$ dont les courbes $\mathscr C_f$ et $\mathscr C_g$ sont représentées ci-contre dans un repère du plan.

- 1. Étudier la position relative des courbes \mathscr{C}_f et \mathscr{C}_g
- 2. En déduire les solutions des équations et inéquations suivantes

a.
$$f(x) = g(x)$$

b.
$$f(x) > g(x)$$

c.
$$f(x) < g(x)$$



Exercice 3 Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = x^2 - 3x + 7$ et g(x) = 5x - 9. Le plan est muni d'un repère $(0; \overrightarrow{t}; \overrightarrow{f})$. \mathscr{C}_f et \mathscr{C}_g sont les courbes représentatives respectives des fonctions f et g dans ce repère.

- 1. Montrer que pour tout réel x, $f(x) g(x) = x^2 8x + 16$
- 2. Étudier, selon les valeurs de x, le signe de f(x) g(x).
- 3. En déduire la position relative des courbes \mathscr{C}_f et \mathscr{C}_g .

Exercice 4 Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = -3x^2 + 7$ et $g(x) = x^2 - 1$. Le plan est muni d'un repère $(O; \vec{\imath}; \vec{\jmath})$. \mathscr{C}_f et \mathscr{C}_g sont les courbes représentatives respectives des fonctions f et g dans ce repère.

- 1. Montrer que pour tout réel x, f(x) g(x)
- 2. Étudier, selon les valeurs de x, le signe de f(x) g(x).
- 3. En déduire la position relative des courbes \mathscr{C}_f et \mathscr{C}_g .

Exercice 5 Le plan est muni d'un repère $(O; \vec{\imath}; \vec{\jmath})$, f et g sont des fonctions définies sur l'ensemble D, \mathscr{C}_f et \mathscr{C}_g sont les courbes représentatives respectives des fonctions f et g dans ce repère. Étudier la position relative des courbes \mathscr{C}_f et \mathscr{C}_g sur l'ensemble D, puis contrôler le résultats obtenu en traçant les courbes avec la calculatrice.

1.
$$f(x) = -\frac{1}{4}x^2 + 8x - 8$$
 et $g(x) = 3x + 1$ avec $D = \mathbb{R}$

2.
$$f(x) = 4x^3 - 5x^2 + x$$
 et $g(x) = -\frac{1}{2}x$ avec $D = \mathbb{R}$

3.
$$f(x) = \sqrt{5x}$$
 et $g(x) = \frac{x}{2}$ avec $D = \mathbb{R}^+$

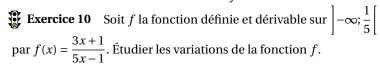
Signe de la dérivée et sens de variations d'une fonction

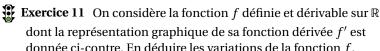
Exercice 6 Soit f la fonction définie et dérivable sur \mathbb{R} par f(x) = -4x + 9. Étudier les variations de la fonction f.

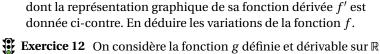
Exercice 7 Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = 2x^2 - 5x + 1$. Étudier les variations de la fonction f.

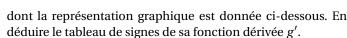
Exercice 8 Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = 2x^3 - 3x^2 + 4x$. Étudier les variations de la fonction f.

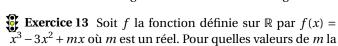
Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = -\frac{x^3}{3} - 2x^2 + 5x + 1$. Exercice 9 Étudier les variations de la fonction f.



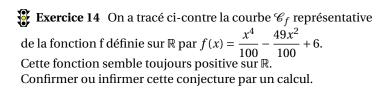


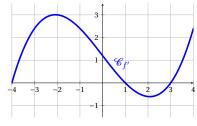


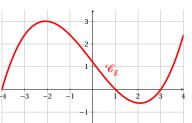


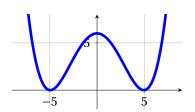


fonction f est-elle strictement croissante sur \mathbb{R} .









Extremum et optimisation

Exercice 15 Soit f une fonction dérivable sur \mathbb{R} et f' sa dérivée. On donne le tableau de signes de f'.

x	-∞		5		+∞
Signe de $f'(x)$		+	0	_	

La fonction f admet-elle un extremum local? Si oui, est-ce un maximum ou un minimum?

Exercice 16 Soit g une fonction dérivable sur $\mathbb R$ et g' sa dérivée. On donne le tableau de signes de g'.

x	$-\infty$		5		+∞
Signe de $g'(x)$		_	0	_	

La fonction g admet-elle un extremum local? Si oui, est-ce un maximum ou un minimum?

Exercice 17 Soit h une fonction dérivable sur $\mathbb R$ et h' sa dérivée. On donne le tableau de signes de h'.

x	$-\infty$		5		+∞
Signe de $h'(x)$		-	0	-	

- 1. La fonction *h* admet-elle un minimum local? Si oui, en quelle valeur?
- 2. La fonction h admet-elle un maximum local? Si oui, en guelle valeur?
- **Exercice 18** Soit f la fonction définie sur \mathbb{R} par $g(x) = -4x^3 + 9x$.
 - 1. Justifier que g est dérivable sur \mathbb{R} et calculer g'(x) pour tout réel x
 - **2**. Dresser le tableau de signes de g'(x) sur \mathbb{R} .
 - 3. En déduire que g admet un maximum local en une valeur que l'on déterminera et un minimum local en une autre valeur que l'on déterminera.

Exercice 19 Une entreprise fabrique et vend des montres. elle en produit chaque jour entre 2 et 24. On note x le nombre de montres produites et vendues chaque jour. On appelle C(x) le cout journalier de fabrication en euros. La fonction C est définie par $C(x) = x^2 - 4x + 169$. On appelle coût unitaire moyen $C_m(x)$ le cout de fabrication d'une montre lorsqu'on en produit x. il est donnée par $C_m(x) = \frac{C(x)}{x}$.

- 1. A quel intervalle I appartient le nombre x?
- 2. Démontrer que la fonction C_m est définie sur I par $C_m(x) = x 4 + \frac{169}{x}$.
- 3. Justifier que C_m est dérivable sur I et déterminer, pour tout réel x de I, $C_m'(x)$.
- 4. Dresser le tableau de signes de $C'_m(x)$ sur I.
- 5. en déduire le nombre de montres que l'entreprise doit fabriquer pour avoir un coût moyen minimal.

Exercice 20 Soit un segment [AB] de longueur 10 et M un point de ce segment. Du même coté de ce segment, on construit deux carrés AMNP et MBCD. On pose AM = x et on étudie l'aire du domaine formé par ces deux carrés en fonction de x.

- 1. A quel intervalle *I* appartient le réel *x*?
- 2. Faire un schéma représentant le problème.
- 3. Soit f(x) l'air du domaine. Montrer que, pour tout x de I, on a : $f(x) = 2x^2 20x + 100$.
- 4. Justifier que la fonction f est dérivable sur I et déterminer f'(x) pour tout x de I.
- 5. En déduire les variations de f sur I et la valeur de x pour laquelle l'aire du domaine est minimale.

Exercice 21 Une coopérative fabrique du jus de pomme. Elle produit entre 0 et 200 litres de jus. Elle établi que ses couts de production, en euros, de x dizaines de litres de jus de pommes étaient données par la fonction $C: x \mapsto x^2 - x + 10$. Chaque dizaine de litres produites sera vendue 19€.

- 1. Quel est l'ensemble de définition de la fonction *C*?
- 2. On appelle R(x) la recette gagnée par la coopérative pour x dizaine de litres vendus. Exprimer R(x) en fonction de x.
- 3. On appelle B(x) le bénéfice réalisé par la coopérative lorsqu'elle produit et vend x dizaines de litres de jus de pomme. Quel que soit x, on a B(x) = R(x) C(x). Montrer que la fonction bénéfice B est définie sur [0;20] par $B(x) = -x^2 + 20x 10$.
- 4. Étudier les variations de la fonction *B* sur [0;20].
- 5. En déduire le nombre de litres que la coopérative doit produire afin d'obtenir un bénéfice maximum.

Exercice 22 Une entreprise fabrique et vend chaque jour un nombre x d'objets. Chaque objet est vendu $100 \in$. Partie A : Coût de production unitaire

Le coût de production unitaire U(x) exprimant le coût de production par objet produit est $U(x) = x - 10 + \frac{900}{x}$ pour $x \in I = [10; 100]$.

- 1. a. Étudier la fonction U sur I et tracer sa courbe représentative \mathscr{C} en prenant pour unités 1cm pour 5 objets et 1cm pour $10 \in$.
 - **b.** Déterminer pour quelle production le coût unitaire est le plus bas. Déterminer alors le bénéfice de l'entreprise.
- 2. Déterminer graphiquement le nombre d'objets que l'on doit fabriquer et vendre pour avoir un coût de production unitaire inférieur ou égal à 80 €.

Partie B : Étude du bénéfice

- 1. Montrer que le bénéfice global de l'entreprise est $B(x) = -x^2 + 110x 900$.
- 2. Déterminer le sens de variation de la fonction B(x).
- 3. Déterminer la production pour avoir un bénéfice maximal. Quel est ce bénéfice?

Exercice 23 Un industriel doit fabriquer une boîte fermée de volume $1dm^3$ ayant la forme d'un parallélépipède rectangle de hauteur y et dont la base est un carré de côté x > 0. L'unité de longueur est le décimètre.

1. Justifier que $y = \frac{1}{x^2}$.

- 2. En déduire que l'aire totale de la boîte est : $S(x) = 2x^2 + \frac{4}{x}$
- 3. Montrer que pour x > 0, $S'(x) = \frac{4(x-1)(x^2+x+1)}{x^2}$.
- **a.** En déduire le sens de variation de S sur \mathbb{R}_+^* .
 - **b.** Donner les dimensions de la boîte d'aire minimale.

Exercice 24 Un mobile se déplace sur un axe [Ox) gradué en centimètre. On observe son déplacement pendant une durée de 6 secondes.

Sa position sur l'axe est donnée, en fonction du temps t(en s), par la fonction $f(t) = \frac{1}{2}t^3 - 3t^2 + 9t$.

- 1. Étudier les variations de la fonction f sur [0;6]
- 2. Décrire le mouvement du mobile sur son axe.
- 3. la vitesse instantanée du mobile à un instant t est égale à f'(t) et est exprimée en $cm.s^{-1}$.
 - a. Quelle est sa vitesse initiale?
 - **b.** A quels instants sa vitesse est-elle inférieure à $1cm.s^{-1}$?

Variation et encadrement

Exercice 25 Soient x et y deux nombres strictement négatifs tels que x < y. Pour chaque inégalité ci-dessous, dire si elle est vraie ou fausse en justifiant.

1.
$$x^2 > y^2$$

1.
$$x^2 > y^2$$
 2. $\frac{1}{x} > \frac{1}{y}$ 3. $\frac{x}{3} > \frac{y}{3}$ 4. $x^3 < y^3$ 5. $-y < -x$

3.
$$\frac{x}{3} > \frac{y}{3}$$

4.
$$x^3 < y^3$$

$$5. -y < -x$$

- Exercice 26 Démontrer que, pour tout réel x tel que 3 < x < 5 alors $0 \le (3 x)^2 \le 4$
- Exercice 27 Soit f la fonction définie sur I = [0, 5] par $g: x \mapsto -x^2 + 4x 3$. Démontrer que pour tout réel x de I, $-8 \le g(x) \le 1$.
- **Exercice 28** Soit f la fonction définie sur \mathbb{R} par $f: x \mapsto x^3 3x$.
 - 1. Étudier les variations de f sur \mathbb{R}
 - 2. En déduire que, si a et b sont des réels de l'intervalle [-1;1] tels que a < b alors : $a^3 b^3 > 3(a b)$.
- Exercice 29 Soit g la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{4}x^4 2x^2 3$.
 - 1. Étudier les variations de g sur \mathbb{R}
 - 2. Dresser le tableau de variations complet sur \mathbb{R} .
 - 3. Dans chacun des cas suivants, donner un encadrement de g(x).

a.
$$0 \le x \le 2$$

b.
$$x \in [-3; 0]$$